A new genus of Hydroporini from south-western Australia

(Coleoptera, Dytiscidae)

Lars Hendrich, Emmanuel F. A. Toussaint & Michael Balke


A molecular phylogenetic analysis of the four genera Antiporus Sharp, 1882, Chostonectes Sharp, 1882, Megaporus Brinck, 1943 and Tiporus Watts, 1985 of Australian Hydroporini shows that Antiporus gottwaldi Hendrich, 2001 forms a clade distant from the rest of the species of that genus. The Australian Antiporus pennifoldae Watts & Pinder, 2000 has not been studied genetically, however, based on several morphological characters it must also be included in the new genus Brancuporus Hendrich, Toussaint & Balke gen. nov. Brancuporus gottwaldi (Hendrich, 2001) comb. nov. and Brancuporus pennifoldae (Watts & Pinder, 2000) comb. nov. can be separated from Antiporus species by having 1) a distinctly asymmetric central lobe of the aedeagus, and 2) in having flanged elytra, at least in females of both species. They are restricted to the peatlands and seasonal swamps of the south-western corner of Southwest Australia.

Lars Hendrich (corresponding author), Emmanuel F. A. Toussaint & Michael Balke, Zoologische Staatssammlung München, Münchhausenstraße 21, 81247 München, Germany; e-mail: hendrich@zsm.mwn.de

Introduction

Australia houses a rich and diverse Hydroporini fauna with lots of endemic genera. The 147 known species (Nilsson 2001, 2013), inhabiting all kind of lentic and lotic aquatic habitats around Australia (e.g. Watts 1997, 2002; Hendrich 2003, 2008; Hendrich & Fery 2008; Hendrich & Watts 2009; Hawlitschek et al. 2011, 2012). Despite the fact that most Australian Hydroporini genera have been revised in recent years, and lots of species have been discovered, the situation on the generic level is quite stable (Nilsson 2013).

Surprisingly a comprehensive molecular phylogenetic analysis of an almost complete set of Australian Hydroporini (Toussaint et al. in press) has shown that a single species in the genus Antiporus Sharp, 1882 forms a clade distant from the rest of the genus and is thus assigned to a new generic name.

Material and methods

Taxon sampling and phylogenetic inference

We compiled the most complete molecular dataset of Australian dytiscid species to date (Hendrich et al. 2010) for the following genera: Antiporus Sharp, 1882, Chostonectes Sharp, 1882, Megaporus Brinck, 1943 and Tiporus Watts, 1985 to test the monophyly of each genus and investigate the relationships among Antiporus especially regarding A. gottwaldi and the morphologically close A. pennifoldae (the specimens used in this study are listed in Table 1). In order to root the trees, the species Carabhydrus niger Watts, 1978 was selected. DNA was extracted from leg or thoracic tissues of freshly collected beetles stored in 96 % ethanol using the DNeasy kit from Qiagen (Hilden, Germany). We used standard protocols (http://zsm-entomology.de/wiki/The_Beetle_D_N_A_Lab) to amplify and sequence the Cytochrome b (CytB), Cytochrome oxidase subunit 1 (CO1), Histone 3 (H3) and Histone 4 (H4) (Table 2). Once both directions were sequenced, the sequences were eye-corrected and aligned using Geneious R6 (Biomatters, available from...
http://www.geneious.com), and the reading frame of each gene was checked under Mesquite 2.75 (available from http://mesquiteproject.org). Under the same software, we concatenated the four genes to produce a combined dataset.

The phylogenetic inferences were completed using three different methods: Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). MP analyses were carried out under TNT 1.1 (Goloboff et al. 2008) with the Tree Ratchet, Tree Fusing and Tree Drifting algorithms (Goloboff 1999). 1000 Jackknife replicates (JK) were used to evaluate the robustness of the phylogenetic inference. For both ML and BI analyses, the best model of sequence evolution was selected using jModelTest 0.1.1 (Posada 2008). The ML analyses were realized on the combined dataset under RAxML (Stamatakis 2006) and we performed 1000 thorough Bootstrap replicates (BS) to investigate the level of support.

Table 1. List of species of the subfamily Hydroporinae, tribe Hydroporini, used in this study. NSW = New South Wales, Gb = already in Genbank, number = newly submitted data to Genbank.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>col1</th>
<th>cytb</th>
<th>h3</th>
<th>h4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiporus bakewellii</td>
<td>Victoria, NSW</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965722</td>
</tr>
<tr>
<td>Antiporus blakei</td>
<td>NSW, South Australia, Tasmania</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965737</td>
</tr>
<tr>
<td>Antiporus femoralis</td>
<td>NSW, South Australia, Tasmania</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965742</td>
</tr>
<tr>
<td>Antiporus gilbertii</td>
<td>Western Australia</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965747</td>
</tr>
<tr>
<td>Brancuporus gottwaldi</td>
<td>Western Australia</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965732</td>
</tr>
<tr>
<td>Antiporus hollingsworthi</td>
<td>Western Australia</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965673 HG965708</td>
<td></td>
</tr>
<tr>
<td>Antiporus interrogationis</td>
<td>New South Wales</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965716</td>
</tr>
<tr>
<td>Antiporus jenniferae</td>
<td>Northern Territory</td>
<td>Gb</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965712</td>
</tr>
<tr>
<td>Antiporus occidentalis</td>
<td>Western Australia</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965707</td>
<td></td>
</tr>
<tr>
<td>Antiporus uncifer</td>
<td>New Zealand</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965640</td>
<td></td>
</tr>
<tr>
<td>Antiporus wilsoni</td>
<td>Queensland</td>
<td>Gb</td>
<td>Gb</td>
<td>HG965724</td>
<td></td>
</tr>
<tr>
<td>Carabhydrus niger</td>
<td>Victoria</td>
<td>Gb</td>
<td>HG965672 HG965706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chostonectes johnsonii</td>
<td>New South Wales</td>
<td>Gb</td>
<td>HG965663 HG965696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chostonectes nebulosus</td>
<td>South Australia</td>
<td>Gb</td>
<td>HG965666 HG965699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chostonectes sharpi</td>
<td>Queensland</td>
<td>Gb</td>
<td>HG965664 HG965697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus gardnerii</td>
<td>South Australia</td>
<td>Gb</td>
<td>HG965670 HG965703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus hamatus</td>
<td>NSW, Victoria, South Australia</td>
<td>Gb</td>
<td>HG965653 HG965685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus howitti</td>
<td>NSW, Victoria, South Australia</td>
<td>Gb</td>
<td>HG965649 HG965682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus natvigi</td>
<td>Queensland</td>
<td>Gb</td>
<td>HG965661 HG965694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus solidus</td>
<td>Western Australia</td>
<td>HG965630 HG965641 HG965674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaporus wilsoni</td>
<td>South Australia</td>
<td>Gb</td>
<td>HG965648 HG965681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus centralis</td>
<td>Northern Territory</td>
<td>Gb</td>
<td>HG965647 HG965680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus collaris</td>
<td>Northern Territory</td>
<td>Gb</td>
<td>HG965657 HG965689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus josepheni</td>
<td>Northern Territory</td>
<td>Gb</td>
<td>HG965665 HG965698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus lachlani</td>
<td>Western Australia</td>
<td>Gb</td>
<td>HG965652 HG965684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus tambreyi</td>
<td>Western Australia</td>
<td>Gb</td>
<td>HG965669 HG965702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiporus undecimmaculatus</td>
<td>Northern Territory</td>
<td>Gb</td>
<td>HG965660 HG965693</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Primers used to amplify regions of the cytochrome oxidase subunit 1 (CO1) and cytochrome B (CytB).

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primer</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CytB</td>
<td>CB3</td>
<td>GAGGAGCAACTGTAATTACTAA</td>
<td>Barraclough et al. 1999</td>
</tr>
<tr>
<td></td>
<td>CB4</td>
<td>AAAAGAAAAAGTATCATTACGGTTGAAT</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Pat</td>
<td>CAACATTATTTGATTTTGTG</td>
<td>Simon et al. 1994</td>
</tr>
<tr>
<td></td>
<td>Jerry</td>
<td>TCCAAATGCACAACTAATTGGCAAT</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>H3aF</td>
<td>ATGGCTCGTACCAAGCAGAC(AG)CGC</td>
<td>Colgan et al. 1998</td>
</tr>
<tr>
<td></td>
<td>H3aR</td>
<td>ATATCCCT(AG)GGCAT(AG)AT(AG)TGAC</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>H4F2s</td>
<td>TSCGGYAYACATTCGAGGTAC</td>
<td>Pineau et al. 2005</td>
</tr>
<tr>
<td></td>
<td>H42er</td>
<td>CKYTIAGICRTAIACCACRTCCAT</td>
<td></td>
</tr>
</tbody>
</table>
at each node. Eventually, we also carried out BI analyses on the combined dataset under MrBayes 3.2 (Ronquist et al. 2012) with the following settings: the model of substitution set accordingly to the result of jModelTest, two runs of four Markov Chains Monte Carlo (MCMC, one cold and three incrementally heated) running for 8 million generations and sampling a topology every 1000 cycles. After checking the convergence of the runs under Tracer 1.5 (available at: http://beast.bio.ed.ac.uk/Tracer) and applying a conservative burn-in of 25%, we used the command “sump” in MrBayes to calculate the posterior probabilities (PP) and produce a 50% majority rule consensus tree. A PP ≥0.95 and a BS or JK ≥85 were recognized as indicating a strong support for a given node (Felsenstein 2004).

New sequences were submitted to Genbank, see Table 1.

Fig. 1. MrBayes 50% majority-rule consensus tree based on the molecular dataset. The support of each node recovered in the different analyses (BI, ML and MP) is indicated on the topology following the caption. A picture of the habitus of B. gottwaldi comb. nov. is provided.
Systematics

*Brancuporus* Hendrich, Toussaint & Balke gen. nov.

Figs 2–12

Type species. *Antiporus gottwaldi* Hendrich, 2001 by present designation.

Material studied. The material used for this study is listed in Watts & Pinder (2000) and Hendrich (2001).


Diagnosis. *Brancuporus* Hendrich, Toussaint & Balke gen. nov. is assigned to the Hydroporini based on parameres of the aedeagus formed by one segment, and hind coxal process not in the same plane as the abdomen, but protruding like a step, in lateral view (Pederzani 1995). It is a genus of small sized elongate-oval, reddish-brown Hydroporini (3.00–3.35 mm), represented by two species restricted to south-western Australia.

The new genus is well separated from all other Hydroporini by the combination of the following characters: 1) Body elongate oval, reddish-brown, 2) Fourth tarsomere of protarsus scarcely visible; 3) Pronotum and elytron with narrow but well-marked lateral beading; 4) Elytra at least in female flanged; 5) Posterior part of epipleuron comparatively broad; 6) Humeral angle of elytron smoothly rounded; 7) Prosternal process blunt, sides weakly bowed, moderately ridged; 8) Distinctly asymmetric central lobe of aedeagus.

Figs 2–3. Habitus of *Brancuporus gottwaldi* comb. nov. (scale bar = 1.5 mm). 2. Dorsal side; 3. Ventral side.
Brancuporus gen. nov. can be separated from Antiporus by having 1) a distinctly asymmetric central lobe of the aedeagus, and 2) in having flanged elytra, at least in females of both species.

Description

Measurements (N = 15). Total length of beetles 3.00–3.35 mm; length without head 2.75–2.95 mm; greatest width of beetles 1.70–1.85 mm.

Colour. Upper side comparably light; head reddish; pronotum ferrugineous anteriorly and laterally, dark posteriorly and medially; elytron dark brown, paler laterally (Fig. 2). Venter yellowish to brownish; pronotum, epipleuron, legs and abdominal ventrites yellowish to ferrugineous; metaventrite, metacoxal plates and processes brownish. Antennomeres yellowish and darkened anteriorly. Sculpture: dorsal surface, punctures dense, moderately sized; those on head weaker and sparser, a little smaller than eye facet. Pronotum and elytron with narrow but well marked lateral beading. Microreticulation on head and pronotum fine, moderately impressed, on elytron very fine and almost invisible. Ventral surface (Fig. 3) with punctures very dense, microreticulation similar to that on elytron. Prosternal process blunt, sides weakly bowed, moderately ridged. Metacoxal lines parallel in apical quarter, weakly diverging posteriorly, intralinear space flat, not depressed.

Male. Protarsi moderately expanded, single proclaw relatively stout, bent at right angles evenly curved with ventral basal spine (Fig. 4). Mesotibia normal, mesotarsi similar to protarsi except that the second and third tarsomere are a little shorter and two claws are present. Metatibia a little stouter than in female, with well marked beading in middle
at hind margin (Fig. 8). Apical third of elytron not flanged. Central lobe of aedeagus with asymmetric tip (ventral view, Figs 10–11).

Female. Protarsi weakly expanded, two claws. Mesotarsi moderately expanded, more so than protarsi. Metatibia simple. Elytron weakly flanged (Fig. 6).

**Etymology.** The name *Brancuporus* gen. nov. is derived from the name of our highly valued colleague, the late dytiscid specialist Dr Michel Brancucci (1950–2012), Basel, Switzerland. Its gender is masculine.

**Systematic notes.** The small size, relatively uniform reddish-brown colour and essentially simple metamemora (Hendrich 2001) suggest that *Brancuporus gottwaldi* comb. nov. is close to *Antiporus pennifoldae* (Watts & Pinder 2000), also described from Southwest Australia. Females of both species have flanged elytra [strongly flanged in *A. pennifoldae* (Fig. 7) and less flanged in *B. gottwaldi* (Fig. 6)]. Furthermore, the distinctly asymmetric central lobe of the aedeagus is a character shared by *B. gottwaldi* and *Antiporus pennifoldae* (Figs 12–13). Based on these morphological characters and despite the fact that there was no DNA of *A. pennifoldae* available for this study, *A. pennifoldae* is here transferred to *Brancuporus* gen. nov.

**Distribution.** The new genus is highly endemic to the most south-western part of Southwest Australia. Both species were collected in seasonal peatland swamps. The habitat and its water beetle coenosis are described in detail by Hendrich (2001).

**Molecular systematics.** Our phylogenetic analyses show (Fig. 1) that *Brancuporus* gen. nov. is not part of the *Antiporus* clade. It is rather part of a separate lineage sister to the *Tiporus* and *Antiporus* clades. The molecular data also show clearly that the species *Brancuporus gottwaldi* comb. nov. does not belong to any of the other known Australasian Hydroporini genera. Additionally, our data show that Australian *Brancuporus* gen. nov. does not create paraphyly among other Australasian genera (Toussaint et al. in press). This result is well supported in our analyses (Fig. 1). Essentially the same tree topology was recovered with different analytical approaches (maximum likelihood, parsimony and Bayesian probabilities as implemented in MrBayes, Fig. 1, node support values).

**Acknowledgements**

Dr Chris Watts is thanked for his steady support, generous assistance and hosting during the several visits of LH in Adelaide, South Australia. This work was supported by German Science Foundation (DFG) grants BA2152/6-1, 7-1 and 11-1. The Department of Conservation and Land Management (CALM) is acknowledged for giving permission to conduct scientific research in Nature Reserves in south-western Australia (permit numbers: SF 003017 and NE 002348). Katja Neven (ZSM, Munich, Germany) is thanked for providing the habitus photos.

**References**


— , Pons, J., Ribera, I. & Balke, M. 2010. Mitochondrial cox1 sequence data reliably uncover patterns
of insect diversity but suffer from high lineage-
doi:10.1371/journal.pone.00114448
– – 2013. A world catalogue of the family Dytiscidae or
the diving beetles (Coleoptera, Adephaga). Version
1.1.2013. Distributed as a PDF file via Internet. Available
from: http://www2.emg.umu.se/projects/
biginst/andersn/
Pederzani, F. 1995. Keys to the identification of the
genera and subgenera of adult Dytiscidae (sensu
lato) of the world (Coleoptera Dytiscidae). Atti
dell’Accademia Roveretana degli Agiati, Contributi
della Classe di Scienze Matematiche, Fisiche e Natu-
Pineau, P., Henry, M., Suspène, R., Marchio, A., Det-
tai, A., Debruyn, R., Petit, T., Lécu, A., Moisson,
2005. A universal primer set for PCR amplification
of nuclear histone H4 genes from all animal species.
Posada, D. 2008. jModelTest: Phylogenetic model aver-
gaging, Molecular Biology and Evolution 25: 1253–
1256.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres,
D. L., Darling, A., Höhna, S., Larget, B., Liu, L.,
Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes
3.2: efficient Bayesian phylogenetic inference and
model choice across a large model space. Systematic
Biology 61 (3): 539–542.
Simon, C., Frati, F., Beckenbach, A. T., Crespi, B., Liu, H.
& Filo, P. 1994. Evolution, weighting, and phyloge-
etic utility of mitochondrial gene sequences and a
compilation of conserved polymerase chain reaction
primers. Annals of the American Entomological
Society 87: 651–701.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likeli-
hood-based phylogenetic analyses with thousands
2690.
Toussaint, E. F. A., Condamine, F. L., Hawlitschek, O.,
Unveiling the diversification dynamics of Aus-
tralian predaceous diving beetles in the Cenozoic.
Systematic Biology.
(Coleoptera; Dytiscidae) from Australia, with notes
on A. femoralis (Boheman) and A. interrogationis
(Clark). Records of the South Australian Museum
30(1): 35–42.
– – 2002. Checklist and guides to the identification, to
genus, of adults and larval Australian water beetles
of the families Dytiscidae, Noteridae, Hygrobiidae,
Haliplidae, Gyrinidae, Hydraenidae and the su-
perfamily Hydrophiioidea (Insecta – Coleoptera).
Cooperative Research Centre for Freshwater Ecol-
yogy (Australia). Identification and Ecology Guide
43: 1–110.
from Western Australia (Coleoptera: Dytiscidae).